

Shri Vile Parle Kelavani Mandal's **DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING** (Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Proposed scheme for Honors in DevOps(Development and Operations) (Academic Year 2022-2023)

Sr	Course	Course	Teaching Scheme (hrs.)				Continuous Assessment (A) (marks)			Semester End Assessment (B) (marks)				(A+B)	Total	
Code		Th	Р	Т	Credits	Th	T/W	Total CA (A)	Th / Cb	0	Р	0 & P	Total SEA (B)	(A+D)	Credits	
Sem V																
1	DJ19ITHN1C1	Development Frameworks	4	-		4	25		25	75				75	100	4
Sem VI								-								
2	DJ19ITHN1C2	DevOps	4			4	25		25	75				75	100	4
3	DJ19ITHN1L1	DevOps Lab		2		1		25	25				25	25	25	1
		Sem VII														
4	DJ19ITHN1C3	MLOps	4	-		4	25		25	75				75	100	4
5	DJ19ITHN1L2	MLOps Lab		2		1		25	25				25	25	25	1
Sem VIII																
6	DJ19ITHN1C4	Cloud Engineering	4			4	25		25	75				75	100	4
		Total	16	4	0	18	100	50	150	300	0	0	50	350	450	18

Program	Program: Third Year (Honours in DevOps (Development and Operations))									Semester: V		
Course: l	Course Code: DJ19ITHN1C1											
					Evaluation Scheme							
	Teaching (Hours		S Exam	Semester E ination Ma	nd urks (A)	Continuous Assessment Marks (B)			Total Mark (A+ B)			
	Practical	tical Tutorial	Total Credits		Theory		Term Test 1	Term Test 2	Avg.			
Lectures				75			25	25	25	100		
				Laboratory Examination			Terr					
4	-	-	4	Oral	Practical	Oral & Practic al	Laboratory Work	Tutorial / Mini project / presentation/ Journal	Total Term work			
				-					-			

Pre-requisite:

Knowledge of any programming language and Database Management System

Course Objectives: The objective of this course is to familiarize learners to different development frameworks. The course also introduces students to the principles and process of software engineering and design thinking.

Course Outcomes: On completion of the course, the learner will be able to:

- 1. Explore various frameworks for application development.
- 2. Apply software engineering principles for application development.

Detaile	ed Syllabus: (unit wise)	5
Unit	Description	Duration
1	Introduction to Software Engineering and Process Model: Software Engineering-process	06
	framework, Software Development Life Cycle (SDLC)	
	Process Models: Incremental and Evolutionary models	
2	Fundamentals of Agile Process: Need of Agile software development, Agile Manifesto and	10
	Principles, Stakeholders and Challenges, Overview of Agile Development Models: Scrum,	
	Extreme Programming, Feature Driven Development, Crystal, Kanban, and Lean Software	
	Development, Methods, Values, Roles, Artifacts, Stakeholders, and challenges. Business	
	benefits of software agility.	
	Introduction to Scrum: Agile Scrum Framework, Scrum Artifacts, Meetings, Activities and	
	Roles, Scrum Team Simulation, Scrum Planning Principles, Product and Release Planning,	
	Sprinting: Planning, Execution, Review and Retrospective; User story definition and	
	Characteristics, Acceptance tests and Verifying stories, Burn down chart, Daily scrum, Scrum	
	Case Study.	
3	Introduction to Architectures: Introduction to Model View Controller (MVC) Framework:	10
	History of MVC, Features of MVC, MVC Architecture, MVC Examples, Popular MVC	
	Frameworks, Advantages and Drawbacks of MVC, 3-Tier Architecture Vs MVC	
	Architecture.	

	The Reactive Manifesto: Introduction, Reactive Principles, Reactive Systems vs Reactive	
	Programming	
	Clean architecture: Introduction, The Dependency Rule, A Typical Scenario.	
4	SOLID Design principles: Introduction, The Single Responsibility Principle, The Open-	12
	Closed Principle, The Liskov Substitution Principle, The Interface Segregation Principle	
	The Dependency Inversion Principle.	
	Reactive architecture: Introduction, Design Principles of Reactive Systems, commands and	
	Events, Commands, Events, Messages, Commands Versus Events: An Example Destinations	
	and Space Decoupling, Time Decoupling, The Role of Nonblocking Input/Output, Blocking	
	Network I/O, Threads, and Concurrency, How Does Nonblocking I/O Work? Reactor Pattern	
	and Event Loop, Anatomy of Reactive Applications.	
5	Core Technologies of Spring Framework: Introduction to Object oriented programming	06
	concept, Spring-Environment Setup, Spring beans and its scopes, Spring bean lifecycle, how	
	to create a bean using Factory Bean? How to create a bean using static Factory Bean? Best	
	Practices of spring Framework, Spring Dependency Injection and Inversion of Controls,	
	Spring Java Configuration vs XML configuration.	
6	Spring Event Handling and Aspect Oriented Programming (AOP): Event Handling in	08
	Spring, Custom Events in Spring, AOP Concepts, Types of AOP, AOP in Spring, AOP Spring	
	Architecture, Framework Services for AOP, Using @AspectJ-Style Annotations, AspectJ	
	Integration, Spring - Transaction Management, Spring Web MVC Framework, Spring -	
	Logging with Log4J.	
	Spring Boot: Introduction to spring boot, spring boot Build systems, spring boot Code	
	structure, Springs and dependency injection, spring boot Runners, Spring Boot - Application	
	Properties	

Books Recommended:

Text Books:

- 1. Iuliana Cosmina Rob Harrop Chris Schaefer Clarence Ho," An In-Depth Guide to the Spring Framework and Its Tools", Apress Fifth Edition, 2017.
- 2. Roger S Pressman, "Software Engineering: A Practitioner's Approach", 8th Edition, Mcgraw-Hill, 2015. 2. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education, 2011.
- 3. Clement Escoffier, Ken Finnigan, "Reactive Systems in Java: Resilient, Event-Driven Architecture with Quarkus, 1st Edition, O'Reilly Media, 2021
- 4. Craig Walls. "Spring Boot in Action" 6th Edition, Manning, 2016.

Reference Books:

- 1. Ashish Sarin J Sharma, "Getting Started with Spring Framework", Second Edition, Createspace, 2012
- 2. Rod Johnson et al," Professional Java Development with the Spring Framework", John Wiley & Sons 2005.

Program	: Final Yea	Semester: V									
Course: I	Course Code: DJ19ITHN1C2										
Course: DevOps Laboratory Course Code: I										DJ19ITHN1L1	
							Evaluation S	cheme			
Teaching Scheme (Hours / week)					Semester E nination M	End arks (A)	Contin	nt	Total Mark (A+B)		
	Practical	ractical Tutorial	Total Credits	ţ.	Theory		Term Test 1	Term Test 2	Avg.		
Lectures	Tuccicui			75			25	25	25	100	
			100	Labo	ratory Exar	nination	Terr	n work	e Code: DJ19ITHN1 sessment To Ma (A- rm st 2 Avg. 5 25 10 rial / Total roject / Total roject / Total rnal 0 25		
4	-	4 Oral Practic		Practical	Oral & Practic al	Laboratory Work	Tutorial / Mini project / presentation/ Journal	Total Term work	50		
				25			15	10	25		

Pre-requisite:

1. Knowledge of Linux Operating system, installation and configuration of services and command line basics.

- 2. Basics of Computer Networks and Software
- 3. Software Development Life cycle.

Course Objectives: The objective of this course is to understand the fundamentals of DevOps engineering and be fully proficient with DevOps terminologies, concepts, benefits, and deployment options to meet real world software development requirements.

Course Outcomes: On completion of the course, learner will be able to:

1. Apply DevOps principles to meet software development requirements.

Detail	ed Syllabus: (unit wise)	~							
Unit	Description	Duration							
1	Introduction to DevOps:	10							
	Phases of Software Lifecycle, Minimum Viable Product (MVP) & Cross-functional								
	Teams, Lean, ITIL, Agile development methodologies, DevOps as a prominent culture								
	to achieve agility in the software development process, History of DevOps, DevOps								
	Stakeholders, Goals, Important terminology, DevOps and Agile, DevOps Tools,								
	Configuration management, Continuous Integration and Deployment (CI/CD), DevOps								
	application delivery.								
2	DevOps Principles and Practices: 7 C's of DevOps Lifecycle for Business Agility,	10							
	DevOps and Continuous Testing, How to Choose Right DevOps Tools, Challenges with								
	DevOps Implementation, Must Do Things for DevOps, Mapping My App to DevOps -								
	Assessment, Definition, Implementation, Measure and Feedback.								
3	Version Control:	06							
	Introduction, Overview of Version Control Systems, Role of Version Control System,								
	Types of Control Systems and their Supporting Tools, Importance of version control in								
	CICD pipeline.								

4	Continuous Integration:	12
	Introduction to Jenkins (With Master –Slave Architecture), Choosing a launch method,	
	Administering Jenkins slaves, Labels, groups and load balancing.	
	Creating Views and Jobs in Jenkins: The Jenkins user interface, Jobs in Jenkins,	
	Creating Views, Managing Views and Jobs in Jenkins: Managing Views in Jenkins,	
	Navigating a job's project page, Job Execution, The Job Execution Configuration Panel,	
	The Status Panel, Console Panel.	
	Continuous Deployment:	
	Overview of Docker, Benefits of Docker Workflow, Process Simplification,	
	Architecture, Docker Containers, Docker Workflow, Anatomy of Dockerfile, Building	
	an Image, Running an Image, Custom base Images, Storing Images.	
5	Continuous Testing	06
	Introducing WebDriver and WebElements, Selenium Testing Tools, Differences	
	between Selenium 2 and Selenium 3, Setting up a project in Eclipse with Maven and	
	TestNG using Java, WebElements, Locating WebElements using WebDriver,	
	Interacting with WebElements, Different Available WebDrivers, Using Java 8 Features	
	with Selenium	
	Introducing Joya & Straam API Using Straam API with Salanium WahDriver	
	introducing Java 8 Stream AFI, Osing Stream AFI with Scientum webDilver.	00
6	Continuous Management:	08
	Overview of Infrastructure as a code. Benefits of Infrastructure as Code. The Four Key	
	Metrics, Three Core Practices for Infrastructure as Code, The Parts of an Infrastructure	
	System, Infrastructure Platforms, Infrastructure Resources, Compute Resources,	
	Storage Resources, Network Resources	
	Puppet Architecture, The Puppet Server, setting up the Puppet Agent, Performance	
	Optimizations, Completing the stack with PuppetDB, The PuppetCA	
	Ansible	
	Ansible Architecture, Ansible and Infrastructure Management, Local Infrastructure	
	Development: Ansible and Vagrant.	
	5	

Suggested list of Laboratory Experiments (Tools):

- 1. To understand Version Control System / Source Code Management, install git and create a GitHub account.
- 2. To Perform various GIT operations on local and Remote repositories using GIT Cheat-Sheet.
- 3. To understand Continuous Integration, install and configure Jenkins with Maven/Ant/Gradle to setup a build Job.
- 4. To Build the pipeline of jobs using Maven / Gradle / Ant in Jenkins, create a pipeline script to Test and deploy an application over the tomcat server.
- 5. To understand Jenkins Master-Slave Architecture and scale your Jenkins standalone implementation by implementing slave nodes.
- 6. To Setup and Run Selenium Tests in Jenkins Using Maven.
- 7. To understand Docker Architecture and Container Life Cycle, install Docker and execute docker commands to manage images and interact with containers.
- 8. To learn Dockerfile instructions, build an image for a sample web application using Dockerfile.
- 9. To install and Configure Pull based Software Configuration Management and provisioning tools using Puppet. /Ansible.
- 10. To learn Software Configuration Management and provisioning using Puppet Blocks (Manifest, Modules, Classes, Function).
- 11. To provision a LAMP/MEAN Stack using Puppet Manifest.

Any other experiment based on syllabus may be included, which would help the learner to understand topic/concept.

Books Recommended

Textbooks

- 1. Mitesh Soni, "DevOps Bootcamp", Packt Publishing Ltd, 2017.
- 2. Karl Matthias & Sean P. Kane, "Docker: Up and Running", 3rd Edition, O'Reilly Publication, 2022.
- 3. Len Bass, Ingo Weber, Liming Zhu, DevOps, "A Software Architects Perspective", Addison Wesley-Pearson Publication, 2015.
- 4. John Ferguson Smart, "Jenkins, The Definitive Guide", 1st Edition, O'Reilly Publication, 2011.
- 5. Ryan Russell-Yates, "Mastering Puppet 5: Optimize enterprise-grade environment performance with Puppet", 1st Edition, Packt Publishing, 2018.
- 6. Jonathan McAllister, "Master Jenkins", Packt Publishing, 2015.
- 7. Deepak Gaikwad, Viral Thakkar, "DevOps Tools from Practitioner's Viewpoint", Wiley, 2019.
- 8. Umesh Gundecha and Satya Avasarala, "Selenium Web Driver 3 Practical Guide", 2nd Edition, Packt Publishing, 2014.
- 9. Jeff Geerling, "Ansible for DevOps", 12th Edition, Midwestern Mac, LLC, 2015.
- 10. Mikael Krief, "Infrastructure as Code", 1st Edition, O'Reilly Publication, 2016.
- 11. Stephane Jourdan, Pierre Pomès ," Infrastructure as Code (IAC) Cookbook", 2nd Edition, Packt Publishing, 2017.
- 12. Martin Alfke, Felix Frank, "Puppet 5 Essentials", 3rd Edition, O'Reilly Publication, 2017.

References:

- 1. Sanjeev Sharma and Bernie Coyne, "DevOps for Dummies", 3rd Edition, Wiley Publication, 2017.
- 2. Httermann, Michael, "DevOps for Developers", 1st Edition, APress Publication, 2012.
- 3. Joakim Verona, "Practical DevOps", 2nd Edition Packt publication, 2018.
- 4. Martin Alfke, "Puppet 5 Essentials Third Edition: A fast-paced guide to automating your infrastructure", 3rd Revised Edition, Packt Publishing, 2017.

Online References:

- 1. Continuous Delivery Using Build Pipelines with Jenkins and Ant", https://www.methodsandtools.com/archive/archive.php?id=121.(accessed on Dec.16, 2022).
- 2. DevOps Bootcamp SYBGEN, <u>DevOps Bootcamp</u> <u>SYBGEN</u>, (accessed on Dec.17, 2022).

Prepared by

Checked by

Head of the Department

Principal

Program: 1	Final Year B	Semester: VII								
Course: M	LOps			Course Code: DJ19ITHN1C3						
Course: M	LOps Labor	ratory		Course Code: DJ19ITHN1L2						
Evaluation Scheme										
	Teaching (Hours /	Scheme (week)		Se Exan	emester E nination I (A)	nd Marks	Continuous Assessment Marks (B)			Total Mark (A+B)
	Practical		Total Credits	Theory Term Test 1				Term Test 2	Avg.	
Lectures		ctical Tutorial		75			25	25	25	100
Lectures				Laboratory Examination			Te	rm work	Total Term work	50
4	2	9	5	Oral	Practi cal	Oral & Pract ical	Labora tory Work	Tutorial / Mini project / presentation/ Journal		150
	100			25			15	10	25	

Pre-requisite:

- 1. Knowledge of Linux Operating system, installation and configuration of services and command line basics,
- 2. Basics of Machine Learning
- 3. Knowledge Development Life cycle, development frameworks and DevOps

Course Objectives: The objective of this course is to understand the fundamentals of MLOps and its significance in the ML lifecycle. Students will Learn various tools and technologies used in MLOps to design and build scalable ML pipelines. Students will get exposure to deploy ML models. Students will learn techniques for monitoring, debugging, and optimizing ML systems. Finally, students will explore methods for reproducibility, version control, and model governance.

Course Outcomes: On completion of the course, learner will be able to:

1. Automate the deployment of ML models into the core software system or as a service component.

Detailed Syllabus: (unit wise)								
Unit	Description	Duration						
1	Introduction to Machine Learning Operations							
	Overview of MLOps and its importance, Understanding the challenges in deploying and	06						
	managing ML models, ML development lifecycle, Role of MLOps in the ML							
	development lifecycle, Introduction to DevOps and its application to ML							
2	Data Management, Model Development and Training for MLOps							
	Data versioning and reproducibility, Data preprocessing and feature engineering pipelines							

	Data validation and monitoring, Data quality assurance and governance, Model	06
	versioning and tracking, Model training pipelines and automation, Hyperparameter tuning	
	and model selection, Model evaluation and validation techniques	
3	Model Deployment and Serving, Continuous Integration and Delivery (CI/CD) for	
	ML	
	Model packaging and containerization (e.g., Docker), Infrastructure provisioning and	
	orchestration (e.g., Kubernetes), Deploying models as scalable services, managing model	06
	endpoints and versioning, Version control and collaboration (e.g., Git), Building	
	reproducible ML pipelines, Automated testing and code quality checks, Continuous	
	integration and deployment strategies	
4	Monitoring and Performance Optimization	
	Monitoring model performance and behavior, Real-time and batch monitoring	06
	techniques, Logging and error tracking in ML systems, Performance optimization and	
	scalability considerations	
5	Governance and Compliance in MLOps	
	Data privacy and protection in ML systems, Access control and authentication	07
	mechanisms, Security considerations for model deployment, Compliance with industry	
	regulations (e.g., GDPR, HIPAA)	
6	Model Lifecycle Management and Infrastructure for MLOps	
	Model versioning and governance, Retraining and revalidation strategies, Model	
	deployment and retirement, Ensuring fairness, transparency, and accountability.	
	Cloud Platforms and Infrastructure for MLOps	08
	Introduction to cloud platforms (e.g., AWS, Azure, GCP), Deploying ML models on	
	cloud infrastructure, Managing resources and scaling ML workloads, Cost optimization	
	strategies for ML systems.	

Suggested List of Laboratory Experiments:

Any 10 experiments from the below given topics or any other experiment based on syllabus may be included, which would help the learner to understand topic/concept.

- 1. Setting up a Version Control System (VCS) for ML Projects:
 - Experiment with popular VCS tools like Git and create a repository for ML projects.
 - Learn to track code changes, collaborate with team members, and manage different branches.

2. Creating a Continuous Integration (CI) Pipeline:

- Build a CI pipeline using tools like Jenkins, Travis CI, or GitLab CI.
- Automate the process of building, testing, and validating ML models with each code commit.

3. Containerization with Docker:

- Containerize ML models and their dependencies using Docker.
- Experiment with Docker images, containers, and Dockerfile configurations.

4. Orchestrating ML Workflows with Kubernetes:

- Deploy ML models as scalable and resilient services using Kubernetes.
- Experiment with deploying, managing, and scaling ML workloads in Kubernetes clusters.

5. Model Packaging and Deployment with TensorFlow Serving:

- $\circ~$ Package trained ML models using TensorFlow Serving.
- \circ Experiment with deploying and serving models as RESTful APIs.
- 6. Experiment Tracking and Management:

- Use tools like MLflow or Neptune.ai to track experiments, log metrics, and manage model versions.
- Explore features like hyperparameter tuning, model registry, and experiment reproducibility.

7. Continuous Deployment (CD) for ML Models:

- Implement a CD pipeline to automate the deployment of ML models to production.
- Experiment with different deployment strategies, such as blue-green deployment or canary releases.

8. Monitoring and Alerting:

- Set up monitoring and alerting systems to track model performance, data drift, and anomalies.
- Experiment with tools like Prometheus, Grafana, or DataDog to visualize and monitor ML system metrics.

9. Model Performance Optimization:

- Explore techniques for optimizing model performance, such as model quantization, pruning, or distillation.
- Experiment with different optimization approaches and measure their impact on model efficiency.

10. A/B Testing and Experimentation:

- Design and conduct A/B tests to compare the performance of different ML models or algorithms.
- Experiment with statistical analysis and hypothesis testing to evaluate model improvements.

11. Model Governance and Compliance:

- Understand the importance of model governance and compliance in regulated industries.
- Experiment with model explainability, bias detection, and fairness assessment techniques.

12. Infrastructure as Code (IaC) for ML:

- Use tools like Terraform or AWS CloudFormation to manage ML infrastructure.
- Experiment with provisioning and automating the setup of ML environments.

13. Case Studies and Best Practices

- Real-world MLOps case studies
- Best practices and lessons learned
- Industry trends and emerging technologies in MLOps
- Future directions and challenges in the field

Suggested list of tools:

MLOps tools for model development, deployment, and monitoring to standardize, simplify, and streamline the machine learning process.

- 1. Tools for performing AutoML.[AutoGluon, AutoKeras, AutoPyTorch]
- 2. Data and Pipeline Versioning Tools [Pachyderm/ Data Version Control (DVC)]
- 3. Experiment Tracking and Model Metadata Management Tools (MLFlow/ Comnet ML/ Weights & Biases
- 4. End-to-End MLOps Platforms [AWS SageMaker/ DagsHub/ Kubeflow]
- 5. CI/CD for Machine Learning (clearML, CML)
- 6. Orchestration and Workflow Pipelines MLOps Tools [Prefect/ Metaflow/ Kedro]
- 7. Model Deployment and Serving Tools [TensorFlow Extended (TFX) Serving/ BentoML/ Cortex]
- 8. Model Testing & Validation [deepchecks/ trubrics]
- 9. Model Monitoring in Production ML Ops Tools [Evidently/ Fiddler/ Censius AI]

Books Recommended

Textbooks

- Noah Gift, "Practical MLOps: A Guide to Building Real-World Machine Learning Systems", O'Reilly, First Edition, September 2021.
- Mark Treveil, Nicolas Omont, "Introducing MLOps: How to Scale Machine Learning in the Enterprise", O'Reilly Media, First Edition, January 5, 2021
- Emmanuel Raj, "Engineering MLOps: Rapidly build, test, and manage production-ready machine learning life cycles at scale", Packt Publishing Limited, 1st edition, 19 April 2021

Reference Books:

- Hannes Hapke and Catherine Nelson, "Building Machine Learning Pipelines: Automating Model Life Cycles with TensorFlow", O'Reilly, First Edition, 19 July 2020.
- Chris Fregly, Antje Barth, "Data Science on AWS: Implementing End-to-End Continuous Machine Learning Pipelines", O'Reilly, First Edition, 9 May 2021.
- Sridhar Alla, Suman Kalyan Adari, "Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure", Apress publication, 1st edition, 8 December 2020

Web Resources

Blogs and Websites:

- MLflow Blog: MLflow is an open-source platform for managing the ML lifecycle. The blog covers topics related to MLOps, model deployment, and reproducibility.
- Towards Data Science: A popular online publication with a dedicated section on MLOps, featuring articles and tutorials on topics like model deployment, monitoring, and CI/CD pipelines.

Online Courses and Tutorials:

- Coursera: "Machine Learning Engineering for Production (MLOps)" by deeplearning.ai. This course provides a comprehensive introduction to MLOps, covering topics like data and model versioning, deployment, monitoring, and more.
- Udacity: "Machine Learning Deployment" by Google Cloud. This course focuses on deploying and scaling machine learning models using Google Cloud technologies and covers MLOps principles.
- YouTube: You can find numerous tutorials and talks on MLOps from conferences and industry experts. Look for channels like TensorFlow, PyTorch, and DevOps-related channels.

Program	Program: Final Year B.Tech. Information Technology									Semester: VIII		
Course:	Cloud Engi	ineering					Course Code: DJ19ITHN1C4					
					Evaluation Scheme							
	Teaching (Hours	Scheme / week)		Exam	Semester E nination Ma	nd arks (A)	Contin	ent	Total Mark (A+ B)			
	Practical	al Tutorial	l Total Credits		Theory	-	Term Test 1	Term Test 2	Avg.			
Lectures	Tuccicui	Tutoriu			75		25	25	25	100		
				Labo	ratory Exan	nination	Terr					
4	-	-	4	Oral	Practical	Oral & Practic al	Laboratory Work	Tutorial / Mini project / presentation/ Journal	Total Term work			
				-				-	-			

Pre-requisite: Fundamentals of Distributed System.

Course Objectives: The course aims to familiarize students with cloud engineering concepts and principles. The objective of this course is to realize the importance of Cloud Virtualization, Abstractions and Enabling Technologies. This course aims students to understand the hardware, software concepts and architecture of cloud Engineering.

Course Outcomes: On completion of the course learners will be able to:

- 1. Identify the architecture, infrastructure and delivery models of cloud engineering.
- 2. Apply suitable virtualization concepts and address the core issues of cloud engineering such as security, privacy and interoperability.

Detaile	ed Syllabus: (unit wise)	1
Unit	Description	Duration
1	Cloud Engineering Introduction: Cloud Engineering, Layers and Types of Clouds, Cloud Infrastructure Management, Challenges and Applications. Virtualization: Virtualization of Computing, Storage and Resources. Cloud Services: Introduction to Cloud Services IaaS, PaaS and SaaS	05
2	Software as a Service (SaaS) : Evolution of SaaS, Challenges of SaaS Paradigm, SaaS Integration Services, SaaS Integration of Products and Platforms. Infrastructure As a Services (IaaS): Introduction, Background & Related Work, Virtual Machines Provisioning and Manageability, Virtual Machine Migration Services, VM Provisioning and Migration in Action. Platform As a service (PaaS): Integration of Private and Public Cloud, Technologies and Tools for Cloud Engineering, Resource Provisioning services	09
3	Abstraction and Virtualization: Introduction to Virtualization Technologies, Load Balancing and Virtualization, Understanding Hyper visors, Understanding Machine Imaging, Porting Applications, Virtual Machines Provisioning and Manageability Virtual Machine Migration Services, Virtual Machine Provisioning and Migration in Action, Provisioning in the Cloud Context, Virtualization of CPU, Memory, I/O Devices, Virtual Clusters and Resource management, Virtualization for Data Center Automation	10

4	Cloud Infrastructure and Cloud Resource Management: Architectural Design of	
	Compute and Storage Clouds, Layered Cloud Architecture Development, Design Challenges,	09
	Inter Cloud Resource Management, Resource Provisioning and Platform Deployment, Global	
	Exchange of Cloud Resources. Administrating the Clouds, Cloud Management Products,	
	Emerging Cloud Management Standards.	
5	Security: Security Overview, Cloud Security Challenges and Risks, Software-as-a Service	
	Security, Cloud Engineering security architecture: Architectural Considerations, General	
	Issues Securing the Cloud, Securing Data, Data Security, Application Security, Virtual	
	Machine Security, Identity and Presence, Identity Management and Access Control,	09
	Autonomic Security Establishing Trusted Cloud Engineering, Secure Execution	
	Environments and Communications, Autonomic Security Storage Area Networks, Disaster	
	Recovery in Clouds, Cloud Disaster Recovery.	
6	Cloud Middleware and Cloud Based Case-Studies: OpenStack, Eucaluptus, Windows	
	Azure, CloudSim, EyeOs, Aneka, Google App Engine.	10
	Overview of Cloud services, Designing Solutions for the Cloud, Implement & Integrate	
	Solutions, Emerging Markets and the Cloud, Tools for Building Private Cloud: IaaS using	
	Eucalyptus, PaaS on IaaS - AppScale	

Books Recommended:

Textbooks:

- 1. Rajkumar Buyya, James Broberg, Andrzej M Goscinski, "Cloud Computing: Principles and Paradigms", Wiley publication, 2013.
- 2. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud", O'Reilly Publication, 2011.
- 3. Toby Velte, Anthony Velte, Cloud Computing: A Practical Approach, McGraw-Hill Osborne Media, 2013.
- 4. John Rhoton, Cloud Computing Explained: Implementation Handbook for Enterprises, Recursive Press, 2009.

Reference Books:

- 1. Rishabh Sharma: Cloud Computing Fundamentals, Industry Approach and Trends: Wiley Publication,2015.(ISBN: 978-81-265-5306-8)
- 2. Gautam Shroff, Enterprise Cloud Computing Technology Architecture Applications, 2010.[ISBN: 978-0521137355]