Scheme for Second Year B.Tech. Program in Computer Science & Engineering (Data Science): Semester III

				Teaching	Scheme		-	Seme	ster Enc	l Examir	nation (A)		A	Contin	uous Assessn	nent (B)		Aggregat e (A+B)	Credits	earned
Sr	Course Code	Course	Theory (hrs.)	Practic al (hrs.)		Credits	Duration (Hrs)	Theory	Oral	Pract	Oral & Pract	End Sem Exam Total	Term Test 1 (TT1)	Term Test 2 (TT2)	Avg (TT1 & TT2)	Term Work Total	CA Total			
1	DJ19DSC301	Mathematics for Intelligent Systems	3	7		3	3	75			-	75	25	25	25		25	100	3	4
1	DJ19DSL301	Mathematics for Intelligent Systems - Tutorial	9-1	F	1	1	- 1		-	-			- 1	17-17	L -	25	25	25	1	4
2	DJ19DSC302	Data Structures and Algorithms	3			3	3	75	-			75	25	25	25	-	25	100	3	
2	DJ19DSL302	Data Structures and Algorithms Laboratory	/	2		1	2		-		25	25	-	70.0	774	25	25	50	1	4
	DJ19DSC303	Foundations of Data Analysis	3			3	3	75	-	13	-	75	25	25	25	-	25	100	3	
3	DJ19DSL303	Foundations of Data Analysis Laboratory		2		1	2	T.,	-5	T	25	25				25	25	50	1	4
	DJ19DSC304	Database Management Systems	3			3	3	75		_		75	25	25	25	-	25	100	3	
4	DJ19DSL304	Database Management Systems Laboratory		2		1		b -		-		-	-		1	25	25	25	1	4
_	DJ19DSC305	Statistics for Data Science	3			3	3	75				75	25	25	25	-	25	100	3	
5	DJ19DSL305	Statistics for Data Science Laboratory		2		1		-	==			-	-			25	25	25	1	4
6	DJ19DSL306	Programming with Python Laboratory		2		1	2				25	25	-	-]		25	25	50	1	1
7	DJ19A2	Innovative Product Development-I	<u>.</u>	2									-	-6	-2	1		-		
8	DJ19A3	Constitution of India	1				1					-	-		40	-		-		
		Total	16	12	1	21	21	375	0	0	75	450	125	125	125	150	275	725	21	21

Program (Data Sci		ear B. Teo	ch. in Con	nputer S	cience and l	Enginee	ring Se	mester: III		
Course:	Mathematic	es for Intel	ligent Sys	stems			Co	ourse Code: I	DJ19DSC	301
Course: 1	Mathematic	es for Intel	ligent Sys	stems Tu	ıtorial		Co	ourse Code: I	DJ19DST	301
	Teaching (Hours			_	STORE	770	Evaluation 3	Scheme		
	(Hours)	week)	F	Semest	er End Exam Marks (A)	ination	Continuo	ous Assessmen (B)	t Marks	Total
Lectures	Practical Tutoria		Tutorial Total Credits		Theory			Term Test 2	Avg.	marks (A+ B)
			(C)	ظرتي	75		25	25	25	100
				Labor	atory Exami	nation	Terr	n work	Total Term	
3		1	4	Oral	Practical	Oral & Pract ical	Laborato ry Work	Tutorial / Mini project / presentati on/ Journal	work	25
1	3)/						15	10	25	

Pre-requisites: Concepts of basic matrices, partial derivatives and basic probability.

Objective:

To build the strong foundation in learners of mathematics needed for building concepts of machine learning.

Outcomes: On completion of the course, learner will be able to:

- 1. Analyze probability of random variable and probability distributions
- 2. Demonstrate knowledge of linear algebra
- 3. Apply concepts of matrix theory
- 4. Demonstrate concepts of calculus
- 5. Analyze different optimization techniques

Unit	Description	Duration
1.	Probability, Random variables and Probability distributions	10
	Probability: Conditional probability, mutually and pair wise independent events, Bayes' theorem	
	Random variables: discrete random variable, probability mass function, discrete distribution	
	function, continuous random variable, probability density function, continuous distribution	
	function, mathematical expectation, moment generating function, two-dimensional random	
	variable and its joint probability mass and density function, marginal distribution function,	
	conditional distribution functions, covariance, joint moments	
	Probability distributions: discrete probability distribution: binomial distribution, poisson	
	distribution, hypergeometric distribution, continuous probability distribution: uniform	

	distribution, exponential distribution, normal distribution, beta distribution, gamma distribution,	
	central limit theorem	
2.	Linear algebra	08
	vectors in n-dimensional vector space, properties, dot product, cross product, norm and distance,	
	vector spaces over real field, properties of vector spaces over real field, subspaces, linear	
	independence and dependence of vectors, span of vectors, basis of a vector space, dimension of a	
	vector space, Cauchy Schwarz inequality, linear transformation, Norms and spaces, orthogonal	
	compliments and projection operator, Kernel Hilbert spaces	
3.	Matrix theory	08
	Characteristic equation, Eigen values and Eigen vectors, properties of Eigen values and Eigen	
	vectors, Cayley-Hamilton theorem, examples based on verification of Cayley Hamilton theorem,	
	similarity of matrices, diagonalization of matrices, functions of square matrix, derogatory and non-	
	derogatory matrices, least squared and minimum normed solutions	
4.	Calculus	04
	Gradient, directional derivatives, Jacobian, hessian, convex sets, convex functions and its	
	properties	
5	Optimization	12
	Unconstrained and Constrained optimization, convergence	
	Unconstrained optimization techniques: newton's method, quasi newton method	
	Constrained optimization techniques: gradient descent, stochastic gradient descent, penalty	
	function method, lagrange multiplier method, Karush-Kuhn-Tucker method, simplex method,	
	penalty and duality, dual simplex method, downhill simplex method	

List of tutorials: (any eight)

- 1. To solve numerical on discrete probability distributions
- 2. To solve numerical on continuous probability distributions
- 3. To solve numerical on vector spaces (basis and dimension)
- 4. To solve numerical on cauchy-schwarz inequality and linear transformation
- 5. To solve numerical on diagonalizability using eigenvalues and eigenvectors
- 6. To solve numerical on minimal polynomial and functions of a matrix
- 7. To solve numerical on calculus
- 8. To solve numerical on Gradient descent and Lagrange's multiplier method
- 9. To solve numerical on KKT method
- 10. To solve numerical on all forms of simplex method

Any other tutorial based on syllabus may be included, which would help the learner to understand topic/concept.

Books Recommended:

Text Books:

- 1. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication, 44th Edition, Publication Year 1965
- 2. Mathematical Methods in Science and Engineering, Kanti B. Datta, Cengage Learning India, 1st Edition, Publication Year 2011
- 3. Operations Research An Introduction, Hamdy A. Taha, Pearson, 10th Edition, Publication Year 2010
- 4. Operations Research, Kanti Swarup, P. K. Gupta, Mohan Man; S Chand Publication, 2020 Edition, Publication Year 2005

- 1. Analysis for Applied Mathematics, W. Cheney, New York: Springer Science+Business Media, 1st edition, Publication Year 2001
- 2. Linear Algebra Done Right, S. Axler, (Third Edition), Springer International Publishing, Publication Year 2015
- 3. Numerical Optimization, J. Nocedal and S. J. Wright, New York: Springer Science+Business Media, 2nd Edition, Publication Year 2006
- 4. A First Look at Rigorous Probability Theory (Second Edition), J. S. Rosenthal, Singapore: World Scientific Publishing, 2nd Edition, Publication Year 2006
- 5. Linear Algebral Schaum's outline series, Seymour Lipschutz and Marc Lipson, Mc-Graw Hill Publication, 4th Edition, Publication Year 2009
- 6. Advanced Engineering Mathematics, Erwin Kreysizg, John Wiley & Sons, Inc, 10th Edition, Publication Year 2000

Evaluation Scheme:

Semester End Examination (A):

Theory:

- 1. Question paper will be based on the entire syllabus summing up to 75 marks.
- 2. Total duration allotted for writing the paper is 3 hrs.

Continuous Assessment (B):

Theory:

- 1. Two term tests of 25 marks each will be conducted during the semester out of which; one will be a compulsory term test (on minimum 02 Modules) and the other can either be a term test or an assignment on live problems or a course project.
- 2. Total duration allotted for writing each of the paper is 1 hr.
- 3. Average of the marks scored in both the two tests will be considered for final grading.

Laboratory: (Term work)

Term work shall consist of minimum 8 Tutorials.

The distribution of marks for term work shall be as follows:

- i. Laboratory work (Performance of Experiments): 15 Marks
- ii. Journal documentation (Write-up and/or Assignments): 10 marks

The final certification and acceptance of term work will be subject to satisfactory performance of laboratory work and upon fulfilling minimum passing criteria in the term work.

Program (Data Sci		ear B. Tec	h. in Con	nputer S	cience and	Enginee	ring Se	mester: III				
Course: 1	Data Struct	tures and A	lgorithms	5			C	ourse Code: I	DJ19DSC	302		
Course:	Data Struct	tures and A	lgorithms	s Labora	ntory		C	ourse Code: I	DJ19DSL3	302		
	Teaching						Evaluation	Scheme				
	(Hours	/ week)		Semest	er End Exan Marks (A)	nination	Continu	ous Assessmen (B)	t Marks	Total		
Lectures	Practical Tutoria		Total Credits	Theory			Term Test 1	Term Test 2	Avg.	marks (A+ B)		
		1	1		75	63	25	25	25	100		
			(eli	Labor	atory Exami	nation	Ter	n work	Total Term			
3	2	2 -	2 -	2 - 4	4	Oral	Practical	Oral & Pract ical	Laborato ry Work	Tutorial / Mini project / presentati on/ Journal	work	50
	A COL	/		/-		25	15	10	25			

Prerequisite: C Programming

Objectives:

The course intends to introduce and familiarize students with data structures, their use in solving real time complex problems and implementation of these data structures. The course also aims to provide mathematical approach for analyzing algorithms using asymptotic notation and for measuring efficiency of algorithms. Finally, the course intends to make students learn various sorting and searching techniques and choose efficient one based on their efficiency.

Outcomes: On completion of the course, learner will be able to:

- 1. Implement various operations like searching, insertion, deletion, traversal, etc. on various data structures.
- 2. Choose appropriate (efficient) sorting, searching and hashing technique for given problem and implement
- 3. Choose appropriate (efficient) data structure and algorithm and apply them to solve specified problems.
- 4. Evaluate and analyze the efficiency of algorithms based on time and space complexity.
- 5. Formulate new solutions for given problems or improve existing one for better efficiency and optimization.

Jnit	Description	Duration						
1	Review and Introduction	06						
	Review: Pointers, Structures, Function, Recursion							
	Introduction to Data Structures: Need of Data Structures, Types of Data Structures,							
	Abstract Data Type (ADT)							
	Introduction to Algorithms and Analysis: Need of writing algorithm, SDLC							
	(System Development Life Cycle) and role of algorithm, Asymptotic Notation							
	(Big-Oh, Big Omega, Theta Notations), Order of Growth function, Complexity							
	Analysis Techniques, Few examples of analysis of algorithms (like Fibonacci,							
	prefix average, etc.)							
2	Linked List	06						
	Basic concept of Linked List, Comparison of sequential (array-based) and linked							
	organizations, Dynamic Memory Management, ADT of Linked list, Singly Linked							
	list, Doubly Linked list, Circular linked list, Various basic and advanced operations							
	on linked list (Insertion, Deletion, Merge, Traversal, copy, reverse, etc.) and their							
	analysis, Applications of linked list.	h.						
3	Stack and Queue	08						
	Stacks: Introduction to Stack, Stack as an ADT, Stack ADT implementation using	54.						
	array and Linked List with respective analysis and comparison, Applications of							
	Stack: Expression Conversion (Infix to prefix and postfix) and Evaluation (Postfix							
	expression evaluation), Parenthesis Correctness, etc.							
	Queues: Introduction to Queue, Queue as an ADT, Queue ADT implementation							
	using array and Linked List with respective analysis and comparison, Linear							
	Queue, Circular queue, Priority Queue: Heap based implementation, DEQueue,	5-4						
	Applications of Queue.							
4	Trees	08						
-11	Introduction to Trees, Basic Terminology, Types of Trees, Binary tree	E31.						
	representation, Traversal of binary tree, Expression Tree, Binary Search Tree,							
	Operations on binary search tree and their analysis, AVL tree, Applications of tree.	-						
5	Graphs	06						
7/	Representation of Graph, Types of Graph, Breadth-First Search (BFS), Depth–First	1000						
1	Search (DFS), Minimum Spanning Tree: Prim's & Kruskal's Algorithm,	/						
	Applications of graphs.							
6	Sorting and Searching Techniques	08						
	Sorting: Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Heap							
	Sort, Radix sort. Analysis of Sorting Techniques							
	Searching: Linear search, Binary search, Hashing techniques and Collision							
	resolution techniques, Linear hashing, Hashing with chaining, Separate Chaining,							
	Open Addressing, Rehashing, Analysis of Searching Techniques.							

Suggested list of Laboratory Experiments: (At Least 12)

Note: Students are required to complete 12 experiments. At least one experiments is mandatory from each topic.

Any other experiment based on syllabus may be included, which would help the learner to understand topic/concept.

Recursion

• Implementation of recursive algorithms to solve various fundamental problems like: addition of elements in an array, reversing an array, adding all digits of a given numeral, prefix average, factorial of a given number, finding Fibonacci sequence etc.

Sorting and Searching

- Implementation of Insertion sort, Selection sort menu driven program
- Implementation of Quick Sort.
- Implementation of Merge Sort
- Implementation of Heap Sort
- Implementation of Binary search
- Implementation of hashing functions with different collision resolution techniques.

Linked List

- Implementation of Linked Lists menu driven program.
- Implementation of different operations on linked list copy, concatenate, split, reverse, count no. of nodes etc.
- Implementation of polynomials operations (addition, subtraction) using Linked List.

Stack and Queue

- Implementation of Infix to Postfix Transformation and its evaluation program.
- Implementation of Infix to Prefix Transformation and its evaluation program.
- Implementation of double ended queue menu driven program.
- Implementation of queue menu driven program.
- Implementation of Circular queue menu driven program.
- Implementation of Priority queue program using array.
- Implementations of Linked Lists menu driven program (stack and queue).
- Implementations of Double ended queue using Linked Lists.
- Implementation of Priority Queue program using Heap

Trees

- Implementation of BT (Binary Tree) program
- Implementation of BST program.
- Implementation of various operations on tree like copying tree, mirroring a tree, counting the number of nodes in the tree, counting only leaf nodes in the tree.
- Implementation of construction of expression tree using postfix expression

Graphs

• Implementation of Graph menu driven program (DFS & BFS).

Books Recommended:

Text Books:

- 1. R. F. Gilberg and B. A. Forouzan, "Data Structures A Pseudocode Approach with C", 2nd Edition, Cengage Learning, 2005.
- 2. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, "Fundamentals of Data Structures in C", 2nd Edition, W. H. Freeman and Company 2008.

Reference Books:

- 1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C", 4th Edition, Pearson, 2014.
- 2. M. T. Goodrich, R. Tamassia, D. Mount, "Data Structures and Algorithms in C++", Wiley, 2004.
- 3. Tenenbaum, Langsam, Augenstein, "Data Structures using C", Pearson, 2004.
- 4. Aho, Hopcroft, Ullman, "Data Structures and Algorithms", Addison-Wesley, 2010.
- 5. Reema Thareja, "Data Structures using C", Oxford, 2017.

Evaluation Scheme:

Semester End Examination (A):

Theory:

- 1. Question paper will be based on the entire syllabus summing up to 75 marks.
- 2. Total duration allotted for writing the paper is 3 hrs.

Continuous Assessment (B):

Theory:

- 1. Two term tests of 25 marks each will be conducted during the semester out of which; one will be a compulsory term test (on minimum 02 Modules) and the other can either be a term test or an assignment on live problems or a course project.
- 2. Total duration allotted for writing each of the paper is 1 hr.
- 3. Average of the marks scored in both the two tests will be considered for final grading.

Laboratory: (Term work)

Laboratory work will be based on **DJ19DSL302** with minimum 12 experiments to be incorporated.

The distribution of marks for term work shall be as follows:

- I. Laboratory work (Performance of Experiments): 15 Marks
- II. Journal documentation (Write-up and/or Assignments): 10 marks

The final certification and acceptance of term work will be subject to satisfactory performance of laboratory work and upon fulfilling minimum passing criteria in the term work.

Program (Data Sci		ear B. Tec	h. in Con	nputer S	cience and l	Enginee	ring Se	mester: III		
Course: I	Foundation	s of Data A	Analysis				Co	ourse Code: I	DJ19DSC	303
Course: I	Foundation	s of Data A	Analysis I	Laborato	ory		Co	ourse Code: I	DJ19DSL3	303
	Teaching (Hours						Evaluation	Scheme		
	(Hours	weeky		Semest	er End Exam Marks (A)	ination	Continue	ous Assessmen (B)	t Marks	Total
Lectures	Practical	Tutorial	Total Credits		Theory	4	Term Test 1	Term Test 2	Avg.	marks (A+ B)
		1			75	63	25	25		100
			(eli	Labor	atory Exami	nation	Teri	n work	Total Term	
3	2		4	Oral	Practical	Oral & Pract ical	Laborato ry Work	Tutorial / Mini project / presentati on/ Journal	work	50
	100	/				25	15	10	25	

Prerequisite: Basic Mathematics

Objectives:

To develop skills of data analysis techniques for data modelling.

Outcomes: On completion of the course, learner will be able:

- 1. Apply visualization techniques to understand Data.
- 2. Apply ETL and perform OLAP operation.
- 3. Perform various techniques to improve quality of data.
- 4. Apply appropriate feature engineering technique to prepare data for modelling.
- 5. Apply Sampling techniques to sample data for modelling.

Detailed Syllabus: (unit wise)								
Unit	Description	Duration						
1.	Data:	06						
	Data objects and attributes: nominal, binary, ordinal, numeric, discrete, continuous;							
	Characteristics of data sets: dimensionality, sparsity, resolution Types of data sets: record data,							
	data matrix, graph-based data, sequential data, sequence data, time series data, spatial data.							
	Data visualization:							
	Temporal: Scatter plots, Time Series sequences, Line graphs; Hierarchal: Tree diagrams, Ring							
	charts; Network: Matrix charts, Node-link diagrams, Word clouds, Alluvial diagrams;							
	Multidimensional: Pie chart, Venn diagrams, Stacked bar graph, Histograms; Geospatial: Flow							
	map, Density map, Heat maps.							
2.	ETL Process and OLAP:	08						
	Major steps in ETL process, Data extraction: Techniques, Data transformation: Basic tasks, Major							
	transformation types, Data Loading: Applying Data, OLTP Vs OLAP, OLAP definition,							

	Dimensional Analysis, Hypercubes, OLAP operations: Drill down, Roll up, Slice, Dice and	
	Rotation, OLAP models: MOLAP, ROLAP.	
3.	Data Preprocessing	10
	Data Quality: measurement error, data collection error, noise, artifacts, precision, bias, accuracy,	
	outliers, missing values, inconsistent values, duplicate values	
	Data Cleaning: handling missing values and noisy data	
	Data Transformation: smoothing, attribute construction, aggregation, normalization; Data	
	Discretization: binning, histogram analysis, cluster	
	Outlier detection: types of outliers, challenges, statistical method, proximity-based method,	
	clustering-based method	
4.	Feature Engineering	10
4.	Feature Engineering Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chi-	10
4.		10
4.	Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chi-	10
4. 5.	Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chisquare, Signal to noise ratio) and Multivariate methods (Forward selection, backward selection and stepwise selection), Feature extraction: principal component analysis	
	Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chisquare, Signal to noise ratio) and Multivariate methods (Forward selection, backward selection	08
	Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chisquare, Signal to noise ratio) and Multivariate methods (Forward selection, backward selection and stepwise selection), Feature extraction: principal component analysis Elementary Sampling Theory: Census and Sampling Survey, Steps in Sampling Design, Criteria of selecting a good sample	
	Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chisquare, Signal to noise ratio) and Multivariate methods (Forward selection, backward selection and stepwise selection), Feature extraction: principal component analysis Elementary Sampling Theory:	
	Curse of Dimensionality, Feature selection: Univariate methods (Pearson correlation, F score, Chisquare, Signal to noise ratio) and Multivariate methods (Forward selection, backward selection and stepwise selection), Feature extraction: principal component analysis Elementary Sampling Theory: Census and Sampling Survey, Steps in Sampling Design, Criteria of selecting a good sample procedure, Characteristics of a good sample design, Types of sample design: Non Probability and	

Suggested list of Laboratory Experiments: (At least 8 experiments)

Visualization experiments can be performed using Tableau and Data Preprocessing experiments can be performed using Python/R.

- 1. Create new measures on a given dataset and visualize them using a bar graph.
- 2. Perform time series aggregation, apply filters on a given dataset, create line and area charts.
- 3. Apply maps, scatter plots on a given dataset and create a dashboard.
- 4. Perform joins, blends and create dual axis chart.
- 5. Perform table calculations, bins, distributions and create Heat maps.
- 6. Create an interactive data story.
- 7. Perform Exploratory Data Analysis on a given dataset.
- 8. Perform Data cleaning on a given dataset.
- 9. Perform necessary Data Transformation on a given dataset.
- 10. Perform correlation analysis on a given dataset.
- 11. Perform dimensionality reduction using PCA.

Any other experiment based on syllabus may be included, which would help learners to understand the topic/concept.

Books Recommended:

Text Books:

- 1. Data Preparation for Machine Learning, Jason Browniee, ebook by Machine Learning Mastry.
- 2. Best Practices in Data Cleaning: A Complete Guide to Everything you Need to Do Before and After Collecting Your Data, Jason Osborne, Sage Publication, 2012.
- 3. Bad Data Handbook: Cleaning Up the Data so you can get back to work, Ethan McCallum, O'Reilly, 2012
- 4. Feature Engineering and Selection: A practical Approach for Predictive Models, Max Kuhn and Keijell Johnson, CRC Press, 2020

Reference Books:

- 1. The Big Book of Dashboards: Visualizing your Data using Readl-World Business Scenarios, Jeffrey Shaffer, Steve Wexier, Andy Cotgreave, Wiley 2017
- 2. Research Methodology-Methods and Techniques, C. R. Kothari, New Age International, Second Edition.
- 3. Fundamentals of mathematical statistics, S.C.Gupta and V.K.Kapoor, second edition, Sultan Chand Publisher
- 4. Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals, Paulraj Ponniah, Wiley, Second Edition
- 5. Practical Tableau, Rayan Sleeper, O'Reilly 2018
- 6. Data Mining Concepts and Techniques, Han, Kamber, Morgan Kaufmann 3nd Edition.
- 7. Python for Data Analysis, Wes McKinney, O'Reilly, Second Edition, 2018

Evaluation Scheme:

Semester End Examination (A):

Theory:

- 1. Question paper will be based on the entire syllabus summing up to 75 marks.
- 2. Total duration allotted for writing the paper is 3 hrs.

Continuous Assessment (B):

Theory:

- 1. Two term tests of 25 marks each will be conducted during the semester out of which; one will be a compulsory term test (on minimum 02 Modules) and the other can either be a term test or an assignment on live problems or a course project.
- 2. Total duration allotted for writing each of the paper is 1 hr.
- 3. Average of the marks scored in both the two tests will be considered for final grading.

Laboratory: (Term work)

Laboratory work will be based on **DJ19DSL303** with minimum 8 experiments to be incorporated.

The distribution of marks for term work shall be as follows:

- i. Laboratory work (Performance of Experiments): 15 Marks
- ii. Journal documentation (Write-up and/or Assignments): 10 marks

The final certification and acceptance of term work will be subject to satisfactory performance of laboratory work and upon fulfilling minimum passing criteria in the term work.

Program (Data Sci		ear B. Tec	h. in Con	nputer S	cience and	Enginee	ring Se	emester: III		
Course:	Database M	lanagemen	nt System				C	ourse Code: I	DJ19DSC	304
Course: 1	Database M	Ianagemen	nt System	Laborat	cory		C	ourse Code: I	DJ19DSL3	304
	Teaching (Hours						Evaluation	Scheme		
	(Hours	weekj		Semest	er End Exan Marks (A)	ination	Continu	ous Assessmen (B)	t Marks	Total
Lectures	Practical		utorial Total Credits		Theory			Term Test 2	Avg.	marks (A+ B)
		1	1		75	63	25	25	25	100
			(eli	Laboratory Examination			Ter	m work	Total Term	
3	2 - 4	2 -	4	Oral	Practical	Oral & Pract ical	Laborato ry Work	Tutorial / Mini project / presentati on/ Journal	work	25
		/				-	15	10	25	

Prerequisite: Computer Basics

Objectives:

The course intends to introduce the students to the management of database systems, with an emphasis on how to design, organize, maintain and retrieve information efficiently and effectively from a database.

Outcomes: On completion of the course, learner will be able:

- 1. Design an optimized database.
- 2. Create and populate a relational database and retrieve information from the database by formulating SQL queries
- 3. Explain the concepts of transaction, concurrency and recovery.
- 4. Apply indexing mechanisms for efficient retrieval of information from database.

Detailed Syllabus: (unit wise)								
Unit	Description	Duration						
1.	Introduction Database Concepts:	03						
	Introduction, Characteristics of databases, File system v/s Database system, Users of Database							
	system, Data Independence, DBMS system architecture, Database Administrator							
2.	Entity-Relationship Data Model	08						
	The Entity-Relationship (ER) Model: Entity types: Weak and strong entity sets, Entity sets, Types							
	of Attributes, Keys, Relationship constraints: Cardinality and Participation Extended Entity-							
	Relationship (EER) Model: Generalization, Specialization and Aggregation							
3.	Relational Model and Relational Algebra	08						
	Introduction to the Relational Model, relational schema and concept of keys, Mapping the ER and							
	EER Model to the Relational Model Relational Algebra – unary and set operations, Relational							
	Algebra Queries.							

4.	Structured Query Language (SQL)	09
	Overview of SQL, Data Definition Commands, Data Manipulation commands, Data Control	
	commands, Transaction Control Commands.	
	Integrity constraints - key constraints, Domain Constraints, Referential integrity, check	
	constraints, set and string operations, aggregate function, group by clause, having Clause	
	Views in SQL, joins, Nested and complex queries	
5	Relational-Database Design	10
	Pitfalls in Relational-Database designs, Concept of normalization, Functional Dependencies, First	
	Normal Form, 2NF, 3NF, BCNF	
	Transactions Management and Concurrency	
	Transaction concept, Transaction states, ACID properties, Concurrent Executions, Serializability	
	- Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols.	
	Recovery System: Introduction to Recovery system	
6.	Indexing Mechanism	04
	Hashing techniques, Types of Indexes: Single Level Ordered Indexes, Multilevel Indexes,	-
	Overview of BTrees and B+ Trees.	

Suggested List of Experiments for Database Management System Laboratory (DJ19DSL304): (At Least Ten)

- 1. To draw an ER diagram for a problem statement.
- 2. To implement Basic SQL commands.
- 3. To access & modify Data using SQL.
- 4. To implement Joins and Views.
- 5. To implement Subqueries.
- 6. To implement Integrity Constraints.
- 7. To implement triggers.
- 8. To implement procedures, functions and cursors.
- 9. To simulate ARIES recovery algorithm.
- 10. To demonstrate export-import commands.
- 11. To implement B-trees/B+ trees.

Any other experiment based on syllabus may be included, which would help the learner to understand topic/concept.

Books Recommended:

Text books:

- 1. Database System Concepts, Korth, Silberchatz, Sudarshan, 6th Edition, McGraw Hill
- 2. Fundamentals of Database Systems, Elmasri and Navathe, 5th Edition, Pearson education.
- 3. Database Systems Design, Implementation and Management, Peter Rob and Carlos Coronel, Thomson Learning, 5th Edition.
- 4. Distributed Database System, Chhanda Ray, Pearson Education India.
- 5. Database Management Systems, G. K. Gupta, McGraw Hill.

Reference Books:

- 1. SQL and PL/SQL for Oracle 10g, Black Book, Dr. P.S. Deshpande, Dreamtech Press.
- 2. Introduction to Database Management, Gillenson, Paulraj Ponniah, Wiley Publication.
- 3. Database Management Systems, Raghu Ramkrishnan and Johannes Gehrke, TMH.

4. Principles of Distributed Database, M. Tamer Ozsu, Patrick Valduriez, PearsonEducation India.

Evaluation Scheme:

Semester End Examination (A):

Theory:

- 1. Question paper will be based on the entire syllabus summing up to 75 marks.
- 2. Total duration allotted for writing the paper is 3 hrs.

Continuous Assessment (B):

Theory:

- 1. Two term tests of 25 marks each will be conducted during the semester out of which; one will be a compulsory term test (on minimum 02 Modules) and the other can either be a term test or an assignment on live problems or a course project.
- 2. Total duration allotted for writing each of the paper is 1 hr.
- 3. Average of the marks scored in both the two tests will be considered for final grading.

Laboratory: (Term work)

Laboratory work will be based on DJ19DSL304 with minimum 10 experiments to be incorporated.

The distribution of marks for term work shall be as follows:

- i Laboratory work (Performance of Experiments): 15 Marks
- ii Journal documentation (Write-up and/or Assignments): 10 marks

The final certification and acceptance of term work will be subject to satisfactory performance of laboratory work and upon fulfilling minimum passing criteria in the term work.

Program: Second Year B. Tech. in Computer Science and Engineering (Data Science)							ring Se	Semester: III				
Course:							Co	Course Code: DJ19DSC305				
Course:	Statistics fo	or Data Sci	ence Lab	oratory			Co	ourse Code: I	DJ19DSL3	305		
	Tooching	Sahama					Evaluation S	Scheme				
	Teaching Scheme (Hours / week)				Semester End Examination C Marks (A)			Continuous Assessment Marks (B)		Total		
	Practical	1	Tutorial Total Credits	352	Theory	4	Term Test 1	Term Test 2	Avg.	marks (A+ B)		
Lectures		Tutorial					75	73	25	25	25	100
				Laboratory Examination		Tern	Term work					
3	2	2	2 4	4	Oral	Practical	Oral & Pract ical	Laborato ry Work	Tutorial / Mini project / presentati on/ Journal	Total Term work	25	
	1000	/				-	15	10	25			

Prerequisite: Probability, Probability distribution

Objectives:

To build the strong foundation in statistics which can be applied to analyze data and make predictions.

Outcomes: On completion of the course, learner will be able to:

- 1. Interpret data using descriptive statistics
- 2. Demonstrate sampling distributions and estimate statistical parameters
- 3. Develop hypothesis based on data and perform testing using various statistical techniques.
- 4. Perform analysis of variance on data
- 5. Examine relations between data

Detailed Syllabus: (unit wise)					
Description	Duration				
Introduction to Statistics Types of statistics, population vs sample Measures of Central Tendency: arithmetic mean, properties, weighted mean, properties, median, mode, grouped and ungrouped data, empirical relation between the mean, median and mode, geometric mean, harmonic mean, relation between arithmetic, geometric and harmonic mean, outlier Measures of dispersion: range, quartile deviation, mean deviation, standard deviation, properties, variance, root mean square deviation, empirical relations between measures of dispersion, absolute and relative dispersion, coefficient of variation, moments, Pearson's β and γ coefficients, skewness, kurtosis, population parameters and sample statistics, histogram, frequency polygon Measures of position: quartiles, interquartile range, semi interquartile range, percentiles,	08				
	Introduction to Statistics Types of statistics, population vs sample Measures of Central Tendency: arithmetic mean, properties, weighted mean, properties, median, mode, grouped and ungrouped data, empirical relation between the mean, median and mode, geometric mean, harmonic mean, relation between arithmetic, geometric and harmonic mean, outlier Measures of dispersion: range, quartile deviation, mean deviation, standard deviation, properties, variance, root mean square deviation, empirical relations between measures of dispersion, absolute and relative dispersion, coefficient of variation, moments, Pearson's β and γ coefficients, skewness, kurtosis, population parameters and sample statistics, histogram, frequency polygon				

2.	Sampling distribution and Estimation:	07
	Sampling distribution: Central limit theorem, population distribution, chi-square distribution, Z -	
	distribution, student's t-distribution, F-Distribution	
	Statistical Estimation: Characteristics of estimators, consistency, unbiasedness, unbiased	
	estimates, efficient estimates, sufficient estimators, point estimates, interval estimates,	
	determination of sample size for estimating mean and proportions, estimates of population	
	parameters, probable error	
3.	Hypothesis Testing for data driven decision making:	12
	Hypothesis testing: Test of significance, null and alternative hypothesis, type I and type II error,	
	factors affecting Type II error, probability of Type II error, power of test, p Value, critical region,	
	level of significance	
	Confidence interval: Population mean, difference between two population means, population	
	proportion, difference between two population proportions, variance, ratio of variances of two	
	populations	
	Goodness of fit test using Kolmogorov-Smirnov test and Anderson Darling test	
	Tests using z-statistics: difference between sample proportion and population proportion,	
	difference between two sample proportion, difference between sample mean and population mean	
	with known σ and unknown σ, difference between two sample means, one tailed and two tailed	
	tests	
	Test using t-statistics: difference between sample mean and population mean, difference between	
	two independent sample means, difference between means from the same group	
	Test using F-statistics: equality of population variance	
	Test using chi-square statistics: test of independence, goodness of fit	
4.	Analysis of Variance (ANOVA) for data analysis	07
	Sample size calculation, one way ANOVA, POST-HOC Analysis (Tukey's Test), randomized	1.
	block design, two way ANOVA	
5	Examining Rela <mark>ti</mark> onship	08
	Correlation: Scatter plot, covariance, Karl Pearson's coefficient of correlation, hypothesis test	4
	for correlation, correlation vs causation, extreme data values, limits of correlation coefficient,	7
	Rank correlation, Spearman's rank correlation coefficient, Repeated ranks, partial and multi	31
-	correlation	-17
1	Regression: linear regression analysis, lines of regression, regression coefficients, scatter plot with	
	regression lines, hypothesis test for regression, multiple regression, coefficient of determination,	
-	residuals, collinearity, influential observations	1

List of Laboratory Experiments: (any eight using Python)

- 1. To perform descriptive statistics on data.
- 2. To visualize descriptive statistics on data.
- 3. To prove central limit theorem.
- 4. To study sampling distributions and their parameters
- 5. To perform statistical estimation tests on data
- 6. To calculate confidence interval for different parameters
- 7. To perform goodness of fit using Kolmogorov-Smirnov test and Anderson Darling test
- 8. To perform hypothesis test using Z statistics
- 9. To perform hypothesis test using t statistics
- 10. To perform hypothesis test using F statistics
- 11. To perform hypothesis test using Chi square
- 12. To perform ANOVA on given data
- 13. To perform correlation on given data
- 14. To perform regression on given data regression and evaluate the model

Any other experiment based on syllabus may be included, which would help the learner to understand topic/concept.

Books Recommended:

Text books:

- 1. An Introduction to Statistics with Python, Thomas Hasalwanter, Springer, 2016
- 2. Think Stats: Probability and Statistics for Programmers, Allen B. Downey, Green Tea Press, 2011
- 3. Testing Statistical Hypotheses, E. L. Lehmann, Joseph P. Romano, Springer, 2008, third edition.
- 4. Statistical Methods, S. P. Gupta, Sultan Chand, 2014, forty third edition

Reference Books:

- 1. Practical Statistics for data scientists 50+ Essential Concepts Using R and Python, Peter Bruce, Andrew Bruce, Peter Gedeck, Orelly, second edition, 2020
- 2. Statistics, Freedman, David, Robert Pisani, Roger Pervis, W. W. Norton, 2007
- 3. Fundamentals of mathematical statistics, S. C. Gupta, V. K. Kapoor, Sultan Chand, 2002, tenth edition

Evaluation Scheme:

Semester End Examination (A):

Theory:

- 1. Question paper will be based on the entire syllabus summing up to 75 marks.
- 2. Total duration allotted for writing the paper is 3 hrs.

Continuous Assessment (B):

Theory:

- 1. Two term tests of 25 marks each will be conducted during the semester out of which; one will be a compulsory term test (on minimum 02 Modules) and the other can either be a term test or an assignment on live problems or a course project.
- 2. Total duration allotted for writing each of the paper is 1 hr.
- 3. Average of the marks scored in both the two tests will be considered for final grading.

Laboratory: (Term work)

Term work shall consist of minimum 8 experiments.

The distribution of marks for term work shall be as follows:

- i. Laboratory work (Performance of Experiments): 15 Marks
- ii. Journal documentation (Write-up and/or Assignments): 10 marks

The final certification and acceptance of term work will be subject to satisfactory performance of laboratory work and upon fulfilling minimum passing criteria in the term work.

Program: Second Year B. Tech. in Computer Science and Engineering (Data Science)						ring Se	mester: III									
Course: 1	Programmi	ng with Py	thon Lab	oratory			C	ourse Code: I	DJ19DSL3	306						
	Teaching						Evaluation	Scheme								
(Hours / week)			Semester End Examination Marks (A)			Continu	Continuous Assessment Marks (B)									
Lectures			Total Credits	v			Term Test 1	Term Test 2	Avg.	marks (A+ B)						
		2	$\sum_{i=1}^{n}$	1		1	1	1	1		832					
				Laboratory Examination		Ter	Term work									
-	4	4	4	2	Oral	Practical	Oral & Pract ical	Laborato ry Work	Tutorial / Mini project / presentati on/ Journal	work	75					
		3/		7	-(-)-	25	25	25	50							

Prerequisite: Programming Fundamentals

Objectives:

- 1. To learn the basic and OOP concepts of Python.
- 2. To study various advance python concept like inheritance, exception handling, modules etc.
- 3. Learn to develop GUI based standalone and web application.

Outcomes: On completion of the course, learner will be able:

- 1. Demonstrate basic data types and data structures in python.
- 2. Demonstrate the concepts of Object-oriented programming.
- 3. Apply file, directory handling and text processing concepts in python.
- 4. Apply database connectivity, client-server communication using python. 5.
- 5. Apply various advance modules of Python for data analysis.

Detail	ed Syllabus: (unit wise)	
Unit	Description	Duration
1.	Python basics:	10
	Data types in python, Operators in python, Input and Output, Control statement, Arrays in python,	
	String and Character in python, Functions, List and Tuples, Dictionaries	
2.	Introduction to OOP	12
	Classes, Objects, Constructor, Methods, Abstraction, Inheritance, Magic Methods, Exception	
	Handling	
3.	Advanced Python	12
	Building Modules, Packages: Python Collections Module, Opening and Reading Files and Folders	
	(Python OS Module, Python Datetime Module, Python Math and Random Modules Text	
	Processing & Regular expression in python	
4.	Python Integration Primer	10

	Graphical User interface using Tkinter: Form designing Networking in Python: Client Server	
	socket programming, Python database connectivity using SQL lite	
5	Python advance Modules	12
	Numpy: Working with Numpy, Constructing Numpy arrays, Printing arrays, Arithmetic Operations on matrix's, numpy zeros() Matplotlib: Matplotlib-Installation & Sample code, Bar Chart Pandas: Data Processing, Pandas-Data structure, Pandas-Series data, Data Frames	

Suggested List of Laboratory Experiments:

- 1. Exploring basics of python like data types (strings, list, array, dictionaries, set, tuples) and control statements.
- 2. Demonstrate the concept of Abstraction in Python.
- 3. Demonstrate the concept of Inheritance
- 4. Demonstrate exception handling.
- 5. Python program to explore different types of Modules
- 6. Exploring Files and directories
 - a) Python program to append data to existing file and then display the entire file.
 - b) Python program to count number of lines, words and characters in a file.
 - c) Python program to display file available in current directory
- 6. Make use of RE module to do text processing.
- 7. Creating GUI with python containing widgets such as labels, textbox, radio, checkboxes and custom dialog boxes.
- 8. Program to demonstrate CRUD (create, read, update and delete) operations on database (SQLite/ MySQL) using python.
- 9. Creation of simple socket for basic information exchange between server and client.
- 10. Make use of advance modules of Python like Matplotlib, Numpy, Pandas

Any other experiment based on syllabus may be included, which would help the learner to understand topic/concept.

Books Recommended:

Text Books:

- 1. Learn Python the Hard Way, Zed Shaw's Hard Way Series, third edition
- 2. Python Projects, Laura Cassell, Alan Gauld, wrox publication

Digital resources:

- 1. The Python Tutorial", http://docs.python.org/release/3.0.1/tutorial/
- 2. http://spoken-tutorial.org
- 3. www.staredusolutions.org

Evaluation Scheme:

Practical and Oral(A):

Oral & Practical examination will be based on the practical's performed during laboratory sessions.

- 1. Implementation: 15 Marks
- 2. Oral:10 Marks

Total:25 Marks

Continuous Assessment (B):

Term Work:

Laboratory work will be based on syllabus with minimum 10 experiments to be incorporated. Experiments should be completed by students in the given time duration.

The final certification and acceptance of term work will be subject to satisfactory performance of laboratory work and upon fulfilling minimum passing criteria in the term work.

- 1. Laboratory work (Performance of Experiments): 15 Marks
- 2. Mini Project: 10 Marks Total: 25 Marks

Program: Common for All Programs						Semester: III & IV Combined				
Course: Innovative Product Development-I						Course Code: DJ19A2				
				Evalu	nation Sc	heme				
Teaching Scheme (Hours/week)			Semester End Examination Marks (A)			Continuous Assessment Marks (B)			Total marks	
Lectures	Practical	Practical Tutorial	Total Credit s	Theory			Term Test 1	Term Test 2	Avg. (A+ B)	(A+ B)
								17		
				Laboratory Examination		Semester review				
	2		TES.	Ora l	Practic al	Oral & Prac tical	Review 1	Review 2	Total	100
		3/		7		<u>-</u> -	50	50	100	

Objectives:

- 1. To acquaint the students with the process of identifying the need (considering a societal requirement) and ensuring that a solution is found out to address the same by designing and developing an innovative product.
- 2. To familiarize the students with the process of designing and developing a product, while they work as part of a team.
- 3. To acquaint the students with the process of applying basic engineering fundamentals, so as to attempt at the design and development of a successful value added product.
- 4. To inculcate the basic concepts of entrepreneurship and the process of self-learning and research required to conceptualize and create a successful product.

Outcome:

Learner will be able to:

- 1. Identify the requirement for a product based on societal/research needs.
- 2. Apply knowledge and skills required to solve a societal need by conceptualising a product, especially while working in a team.
- 3. Use standard norms of engineering concepts/practices in the design and development of an innovative product.
- 4. Draw proper inferences through theoretical/ experimental/simulations and analyse the impact of the proposed method of design and development of the product.
- 5. Develop interpersonal skills, while working as a member of theteam or as theleader.
- 6. Demonstrate capabilities of self-learning as part of the team, leading to life-long learning, which could eventually prepare themselves to be successful entrepreneurs.
- 7. Demonstrate product/project management principles during the design and development work and also excel in written (Technical paper preparation) as well as oral communication.

Guidelines for the proposed product design and development:

- Students shall form a team of 3 to 4 students (max allowed: 5-6 in extraordinary cases, subject to the approval of the department review committee and the Head of the department).
- Students should carry out a survey and identify the need, which shall be converted into conceptualisation of a product, in consultation with the faculty supervisor/head of department/internal committee of faculty members.
- Students in the team shall understand the effective need for product development and accordingly select the best possible design in consultation with the faculty supervisor.
- Students shall convert the best design solution into a working model, using various components drawn from their domain as well as related interdisciplinary areas.
- Faculty supervisor may provide inputs to students during the entire span of the activity, spread over 2 semesters, wherein the main focus shall be on self-learning.
- A record in the form of an activity log-book is to be prepared by each team, wherein the team can record weekly progress of work. The guide/supervisor should verify the recorded notes/comments and approve the same on a weekly basis.
- The design solution is to be validated with proper justification and the report is to be compiled in a standard format and submitted to the department. Efforts are to be made by the students to try and publish a technical paper, either in the institute journal, "Techno Focus: Journal for Budding Engineers" or at a suitable publication, approved by the department research committee/ Head of the department.
- The focus should be on self-learning, capability to design and innovate new products as well as on developing the ability to address societal problems. Advancement of entrepreneurial capabilities and quality development of the students through the year long course should ensure that the design and development of a product of appropriate level and quality is carried out, spread over two semesters, i.e. during the semesters III and IV.

Guidelines for Assessment of the work:

- The review/ progress monitoring committee shall be constituted by the Head of the Department. The progress of design and development of the product is to be evaluated on a continuous basis, holding a minimum of two reviews in each semester.
- In the continuous assessment, focus shall also be on each individual student's contribution to the team activity, their understanding and involvement as well as responses to the questions being raised at all points in time.
- Distribution of marks individually for the both reviews as well as for the first review during the subsequent semester shall be as given below:

o Marks awarded by the supervisor based on log-book : 20

o Marks awarded by review committee : 20

O Quality of the write-up : 10

In the last review of the semester IV, the marks will be awarded as follows.

• Marks awarded by the supervisor (Considering technical paper writing) : 30

• Marks awarded by the review committee : 20

Note- A Candidate needs to secure a minimum of 50% marks to be declared to have completed the audit course.

Review/progress monitoring committee may consider the following points during the assessment.

- In the semester III, the entire design proposal shall be ready, including components/system selection as well as the cost analysis. Two reviews will be conducted based on the presentation given by the student'steam.
 - First shall be for finalisation of the product selected.
 - Second shall be on finalisation of the proposed design of the product.
- In the semester IV, the expected work shall be procurement of components/systems, building of the working prototype, testing and validation of the results based on work completed in semester III.
 - First review is based on readiness of building the working prototype.
 - Second review shall be based on a presentation as well as the demonstration of the working model, during the last month of semester IV. This review will also look at the readiness of the proposed technical paper presentation of the team.

The overall work done by the team shall be assessed based on the following criteria;

- 1. Quality of survey/ need identification of the product.
- 2. Clarity of Problem definition (design and development) based on need.
- 3. Innovativeness in the proposed design.
- 4. Feasibility of the proposed design and selection of the best solution.
- 5. Cost effectiveness of the product.
- 6. Societal impact of the product.
- 7. Functioning of the working model as per stated requirements.
- 8. Effective use of standard engineering norms.
- 9. Contribution of each individual as a member or the team leader.
- 10. Clarity on the write-up and the technical paper prepared.
- The semester reviews (III and IV) may be based on relevant points listed above, as applicable.

Guidelines for Assessment of Semester Reviews:

- The write-up should be prepared as per the guidelines given by the department.
- The design and the development of the product shall be assessed through a presentation and demonstration of the working model by the student team to a panel of Internal and External Examiners, preferably from industry or any research organisations having an experience of more than five years, approved by the Head of the Institution. The presence of the external examiner is desirable only for the 2nd presentation in semester IV.Students are compulsorily required to present the outline of the technical paper prepared by them during the final review in semester IV.

Program: Common for All Programs						Semester : III				
Course:	Course: Constitution of India						Course Cod	Course Code: DJ19A3		
						Ev	valuation S	cheme		
Teaching Scheme (Hours / week)			Semester End Examination Marks (A)			Continuous Assessment Marks (B)			Total	
Lectures	Practical	Total al Tutorial Credit		Theory			TT1	TT2	Avg.	marks (A+B)
			s	Labora	atory Exami	nation		Term Work	- 1	
01		5		Oral	Practical	Oral & Practical	4			-

Objectives:

- 1. To provide basic information about Indian constitution.
- 2. To identify individual role and ethical responsibility towards society.
- 3. To understand human rights and its implications.

Outcomes: On completion of the course, learner will be able to

- 1. Have general knowledge and legal literacy and thereby to take up competitive examinations.
- 2. Understand state and central policies, fundamental duties.
- 3. Understand Electoral Process, special provisions.
- 4. Understand powers and functions of Municipalities, Panchayat's and Co-operative Societies,
- 5. Understand Engineering ethics and responsibilities of Engineers
- 6. Understand Engineering Integrity & Reliability

Detailed Sy	llabus (unit wise)	/		
Unit	Description	Duration		
	Introduction to the Constitution of India			
1	The Making of the Constitution and Salient features of the Constitution. Preamble to the	2		
	Indian Constitution Fundamental Rights & its limitations.			
2	Directive Principles of State Policy:			
2	Relevance of Directive Principles State Policy Fundamental Duties.			
	Union Executives – President, Prime Minister Parliament Supreme Court of India.			
	State Executives:			
3	Governor, Chief Minister, State Legislature High Court of State.			
	Electoral Process in India, Amendment Procedures, 42nd, 44th, 74th, 76th, 86th & 91st			
	Amendments.			

4	Special Provisions: For SC & ST Special Provision for Women, Children & Backward Classes, Emergency Provisions. Human Rights: Meaning and Definitions, Legislation Specific Themes in Human Rights- Working of National Human Rights Commission in India Powers and functions of Municipalities, Panchyats and Co – Operative Societies.	3
5	Scope & Aims of Engineering Ethics: Responsibility of Engineers Impediments to Responsibility. Risks, Safety and liability of Engineers, Honesty, Integrity & Reliability in Engineering	3

Books Recommended:

Text books:

- 1. Durga Das Basu: "Introduction to the Constitution on India", (Students Edn.) Prentice –Hall EEE, 19th / 20th Edn., 2001
- 2. Charles E. Haries, Michael S Pritchard and Michael J. Robins "Engineering Ethics" Thompson Asia, 2003-08-05.

Reference Books:

- 1. M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
- 2. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice Hall of India Pvt. Ltd. New Delhi, 2004
- 3. Brij Kishore Sharma," Introduction to the Constitution of India", PHI Learning Pvt. Ltd., New Delhi, 2011.
- 4. Latest Publications of Indian Institute of Human Rights, New Delhi

Web Resources:

- 1. www.nptel.ac.in
- 2. www.hnlu.ac.in
- 3. www.nspe.org
- 4. www.preservearticles.com

Prepared by	Checked by	Head of the Department	Principal