

## Minor in Advanced Machine Learning

## Semester: VII

## Program: Common for All Programs (except Computer Science and Engineering (Data Science)

## Course: Advanced Machine Learning (DJ19MN4C3)

## Course: Advanced Machine Learning Laboratory (DJ19MN4L2)

#### **Pre-requisite:**

- 1. Basic arithmetic
- 2. Linear Algebra
- 3. Calculus and Probability,
- 4. Python programming
- 5. Statistics and Machine Learning Basics.

## **Objectives:**

To introduce students to the fundamental concepts of artificial neural networks, different deep learning network models working on time series data and computational linguistic concepts.

**Outcomes:** On completion of the course, the learner will be able to:

- 1. Develop solution using appropriate neural network models.
- 2. Apply appropriate model for a time series dataset.
- 3. Apply appropriate pre-processing and semantic analysis techniques on linguistic data.

| Advanced Machine Learning (DJ19MN4C3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Unit                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Duration |
| 1.                                    | <ul> <li>Introduction to Artificial Neural Learning: History of Deep Learning, Fundamental concepts of biological Neural Networks, Important terminologies of ANN: Activation functions: weights, bias, threshold, learning rate, momentum factor; McCulloch Pitts Neuron: Theory and Architecture; Linear separability;</li> <li>Perceptron: The Perceptron Training Rule, Gradient Descent and Delta Rule; Multilayer Networks; Backpropagation Algorithm: Convergence and local minima, Generalization, overfitting and stopping criteria. Regularization for Deep Learning: Parameter Norm Penalties, Dataset Augmentation, Noise Robustness, Early Stooping, Sparse Representation, Dropout. Optimization for Training, Parameter Initialization Strategies.</li> </ul> | 12       |
| 2.                                    | <b>Convolutional Networks:</b> The Convolution Operation, sparse interactions, parameter sharing, Pooling, Convolution and Pooling as an Infinity Strong Prior, Variants of Basic Convolution Function, Efficient Convolution Algorithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06       |
| 3.                                    | Sequence Modelling: Recurrent Neural Networks (RNN), Bidirectional RNNs, Deep recurrent Networks, Recursive Neural Networks, The challenges of Long-Term Dependencies, Echo State Networks, Leaky Units, The Long Short-Term Memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06       |

|    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Derivation, Constituency Parsing, Dependency Parsing, Lexical Semantics, Vector Semantics,<br>Words and Vectors, Cosine for measuring similarity, Pointwise Mutual Information (PMI),<br>Term Frequency-Inverse Document Frequency (TFIDF), PPMI vector models, Word2vec,<br>Continuous Bag of Words, Vector Visualizing Embedding's, Word Senses -Relations Between<br>Senses, WordNet: A Database of Lexical Relations, Word Sense Disambiguation, Coherence<br>Relation Discourse Structure Parsing               | 12 |
| 6. | Segmentation, Stemming, Lemmatization, N-gram language model. Morphological Analysis-<br>Inflectional morphology & Derivational morphology, Regular expression, Finite State<br>Transducer.<br>Syntax and Semantics Analysis: Introduction to POS Tagging, Probabilistic Tagging, Markov<br>Models, Hidden Markov Models (HMM), Named Entity Tagging, Context Free Grammars                                                                                                                                          | 05 |
| 5. | <b>Computational Linguistic:</b> Introduction and Stages of NLP, Word Tokenization and                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 4. | <b>Time Series Analysis:</b> Types of forecasting methods, Types of Time Series, types of stationarity, trends in time series. Linear time series: MA models, The AR model, The ARMA model, The ARIMA model, Unit roots, Box – Jenkins Model Selection, Seasonality, The SARIMA model, Dickey-Fuller tests, Multiequation Time Series Models: Intervention Analysis, ADLs and Transfer Functions, Introduction to VAR Analysis, Multivariate Time Series: Convolution, Non-linear time series: ARCH and GARCH model. | 11 |

| Advanced Machine Learning Laboratory (DJ19MN4L2) |                                                                                                 |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Exp.                                             | Suggested experiments                                                                           |  |
| 1                                                | Implement Boolean gates using perceptron.                                                       |  |
| 2                                                | Implement backpropagation algorithm from scratch.                                               |  |
| 3                                                | Evaluate and analyse Prediction performance using appropriate optimizers for deep learning      |  |
|                                                  | models.                                                                                         |  |
| 4                                                | Building CNN models for image categorization.                                                   |  |
| 5                                                | Implement Sentiment analysis on text dataset to evaluate customer reviews.                      |  |
| 6                                                | Document classification using RNN models.                                                       |  |
| 7                                                | Outlier detection in time series dataset using RNN.                                             |  |
| 8                                                | Analyze seasonality of a time series data using the following visualizations:                   |  |
|                                                  | Multiple Box Plots                                                                              |  |
|                                                  | Autocorrelation Plot                                                                            |  |
|                                                  | Deseasoning of Time-Series Data                                                                 |  |
|                                                  | Seasonal Decomposition                                                                          |  |
|                                                  | Detecting Cyclic Variations                                                                     |  |
| 9                                                | Implementation for detection of unit roots for Data Stationary: Augmented Dickey –Fuller Test.  |  |
| 10                                               | Comparative Analysis of AR, MA and ARIMA model on finance application.                          |  |
| 11                                               | Perform Pre-processing steps in Natural Language Processing (Tokenization, Stop Word detection, |  |
|                                                  | Stemming and Lemmatization.                                                                     |  |
| 12                                               | Implement Parts of Speech tagging using HMM                                                     |  |
| 13                                               | Implement word-embedding and TF-IDF vectors in Natural Language Processing                      |  |

## **Books Recommended:**

Text books:

- 1. S. N. Sivanandam and S. N. Deepa, "Introduction to Soft Computing", Wiley India Publications, 3rd Edition, 2018.
- Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep Learning", An MIT Press, 2016.
- 3. Walter Enders," Applied Econometric Time Series," Fourth Edition, Wiley, 2014.
- 4. B. V. Vishwas and Ashish Patel, "Hands-on Time Series Analysis with Python," First Edition, Apress, 2020.
- 5. Jurafsky and Martin, "Speech and Language Processing", Prentice Hall, 3rd Edition, 2020.

# Reference Books:

- 1. François Chollet, "Deep Learning with Python", Manning Publication, 2017.
- Josh Patterson, Adam Gibson, "Deep Learning: A Practitioner's Approach", O'Reilly Publication, 2017.
- 3. Chris Chatfield, "Time- Series Forecasting," First Edition, Chapman & Hall/CRC, 2001.
- 4. Douglas C. Montgomery, Cheryl L. Jennings and Nurat Kulahci, "Introduction to Time Series Analysis and Forecasting," Second Edition, Wiley, 2015.
- 5. Yuli Vasiliev "Natural Language Processing with Python and spaCy A Practical Introduction", No Starch Press, 2022.
- 6. Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, "Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems", O'Reilly, 1st Edition, 2020.

# Web Links:

- 1. Virtual Lab on Deep Learning: <u>https://vlab.spit.ac.in/ai/#/experiments</u>
- 2. A course on Time Series Analysis. https://web.stat.tamu.edu/~suhasini/teaching673/time\_series.pdf
- 3. Virtual Lab on NLP: -<u>https://nlp-iiith.vlabs.ac.in</u>